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Approximations with Negative Roots and Poles
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We ask when best uniform rational or polynomial approximations on
[0,1] have negative roots or poles. We show that the best (n + k, n)th
rational approximation to a Stieltjes transform has only negative poles. We
use this to show that the best (n + k, n)th rational approximation is better
than the best (2n + k - 1)th polynomial approximation to such functions.
We also construct a class of entire functions whose best polynomial approx­
imations have negative roots. We show that for this class the best
(n + m + 1)th polynomial approximation behaves better than the best
(n, m)th rational approximation.

Let 7Cn denote the collection of polynomials of degree at most n with real
coefficients (7C_ 1 == 0). Iff is continuous on [a, b] we set

and

where 11·II[a,b] denotes the supremum norm on [a, b]. When we talk about
best approximations it will be in this norm.

We prove the following

THEOREM 1. Let rk(x) E 7Ck' let a be non-decreasing and let

ro 1
f(x) = J -da(t) + rk(x).

o X + t
(1)

Suppose f is defined (as a convergent Stieltjes integral) for x ~ c ~ O.
Suppose that Pn+k E 7Cn+k(k ~ - 1), qn E 7Cn and suppose that

Pn+k(X) - qn(x) f(x)
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has 2n + k + 1 zeroes on [a, b], a ~ c. Then qn has all negative roots and

(2)

where YP 0; >ofor all i and where Sk E 'lrk.

A function of the form f~ 1/(x + t) da(t) is called a Stieltjes transform (of
a). In the context of this paper Stieltjes transforms will always be of non­
decreasing a. We have the following characterization of Stieltjes transforms.

COROLLARY 1. Fix k ~ - 1. The following two conditions are equivalent
for a non-rational f

(A) f can be represented as

.00 1
f(x)=J -da(t)+rk(x),

o x+ t

where rk is a polynomial ofdegree ~k, a is a non-decreasing function and the
above Stieltjes integral converges for x ~ a ~ O.

(B) f is continuous on [a, b], for some b >a ~ 0 and for all n the best
(n + k, n) rationl approximation to f on [a, b] is of the form

where Y7, 07 > 0 and sZ is a polynomial of degree ~k.

Two cases of Theorem 1 are known. The case k = - 1 is proved by Krein
[3, p. 166; or 5, p. 96]. The case where Pn+dqn is the Pade approximant
(that is, all the interpolation points are the same) is proved by Baker
(see [1 D.

We require the following lemmas.

LEMMA 1. Consider, for m a positive integer,

00 a.
f(x) = t;o (x + ~i)m '

where Yi + 1 ~ Yi > 0 and each ai is real. Then the number of zeroes off on
[0, (0) is no greater than the number of sign changes in the sequence
lao' a p az""} (a i terms that vanish are ignored and zeroes are counted
according to their multiplicities).
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LEMMA. 2. Suppose that a is non-decreasing. Consider, for a positive
integer m and a polynomial g,

.0) g(t)
f(x) = I ( )m da(t).

• 0 x+ t

Iff has k possibly multiple non-negative zeroes then g has at least k distinct
positive zeroes.

Both lemmas are immediate consequences of results in [3] or [4]. The
basic point in Lemma 1 is that

Lemma 1 now follows from the variation diminishing properties of the
Laplace transform and Descartes rule of signs. Lemma 2 can be deduced
from Lemma 1 by approximating a by step functions.

We note that Lemma 1 implies that

is a Tchebycheff system on any positive interval.

Proofof Theorem 1. Let qn(x) = LZ=o akxk. Let h = n + k + 1. Consider

(qn(x), f(X))(h) = ~o (~) q~m)(x) f(h-m)(x).

We note that (qn(x) . f(X))(h) has n zeroes on [a, b]. We also note that we
do not need to assume that the zeroes of Pn+k - qnf are distinct. Since
q~m) == 0 for m > n we have, for x> c,

(qix ) . f(X»(h) = ~o (~ ) q~m)(x) fh-m)(x)

= ~ (n) ( n akXk-mkl) (J'O) (h - m)!(_I)h-m )
~o m k~m (k-m)! 0 (x+t)h+l-m da(t)

n k .0) k!(-x)-m
=)' '" (-I)hh' a xkJ mda(t)t='o ~o . k 0 (k-m)!m!(x+t)h+t

n~ .00 (k (k) ( -x ) -m) da(t)- ') -I hh' a x k
--- t='o ( ) . k 10 ];0 m x + t (x + t)h + t
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= k~O (-I)hh! akXk() (_I)k (~ f -(X_d_+a---';'-',;~-"'+-;-l

= (-I)hh! j'OO (~ a (_t)k) da(t)
• 0 1::0 k (x + t)h +1

_ _ h ,.00 qn(-t)
-( I) h.J ( )h+l da(t).

o x + t

We observe, by Lemma 2, that

.00 qn(-t)
J da(t)
o (x + t)h+l
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(3)

can have n non-negative zeroes only if qn(-t) has n positive zeroes. It
follows that qn has only negative roots and that these roots are distinct.
Thus,

where Sk E 7Ck , 0i > O. It remains to show that b i >O. If, for x ~ c,

.00 1
f(x) - rk(x) = I -da(t)

-0 x + t

then there exists m, Pi' YJi ~ 0 so that

11

£~- f(x) + rk(x) II < c.
i= I X + YJi Ic,oo)

If we consider (k + 1)st derivatives we see that, for an appropriate c,

~--, bi

:- (x +[) .)k + 2
1=1 l

has 2n zeroes on [c, 00) and we deduce from Lemma I that each b i > O. I
Proofof Corollary I. That condition A implies condition B follows from

Theorem 1 and the alternation criteria for best rational approximations (see
[2,p. 158]). Calculation (3) of the proof of Theorem 1 allows us to deduce
that if f is not a rational function then the best (n + k, n) rational approx­
imation tofis nondegenerate (see [6,pp. 163-165]).

The proof that B implies A is a consequence of results in Widder (see
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[10, p. 364 D. We observe that since trk is finite dimensional we have, passing
to subsequences if necessary,

Also,

n n .00 I
lim L y, = J - da(t).
n~oo ;=1 x+J7 0 x+t

Each rational function of the form

is a Stieltjes transform of an increasing (step) function fJn. It is now possible,
via Helly's theorem, to write a as a limit of the fJn on [a, 00). I

One can deduce from Corollary I and Lemma I that the poles of the best
(n + k, n)th rational approximation to a Stieltjes transform interlace with the
poles of the best (n + k + I, n + I)th approximation.

THEOREM 2. Suppose f is continuous on [a, b], a ~ 0 and suppose the
best (n + k, n) rational approximation to f on [a, b] is of the form

where Sk E trk and Yi' J; > O. Then

Proof Let

n Yi
r(x) = Sk(X) + L --'--'---­

i= I I + J;x

be the best (n + k, n)th rational approximation to f on [a, b] and let p(x) be
the best (2n + k - I )th polynomial approximation to f on [a, b]. We assume
that

and derive a contradiction. Under the above assumption, appealing to the
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usual alternation criteria for best approximation, we deduce that r(x) - p(x)
has 2n +k + 1 zeroes on [a, b] and hence that

(r(x) - p(x))(2n+k) = (r(x))(2n+k)

has a zero on [a, b ]. This is impossible since

n «(j)2n+k
(r(x))2n+k = (_1)2n+k(2n +k)! ')' i Yi

t::l (I + (ji X )2n+k+ 1

is never zero on [a, b]. I

The above theorem can be applied, by Corollary I, to Stieltjes transforms.
We note that log(x + 1)/x and x -lJ, °< (j < I, are Stieltjes transforms [10, p.
346].

POLYNOMIAL ApPROXIMATIONS WITH REAL ROOTS

Let r be the set of entire functions defined by

and

THEOREM 3. (a) IffE r, then for all n the nth partial sum offhas only
negative roots.

(b) If fE r* then every best uniform polynomial approximation to f on
[-1,1] has only negative roots.

Polya and Szeg6 [8, p. 66] show that

a> 2,

has the property that all its partial sums have negative roots. We use an
analogous argument for Theorem 3.

Proof To prove (a) we suppose that

00

f(z) = 2.: anz n,
n=O
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and consider

We evaluate

For j >a

For j= - n

For -n <j<'-l,

Therefore,

PETER B. BORWEIN

N

SN(Z) = L anZn.
n=O

SN(-l/an )

an(-l/anY .

Thus, SN changes sign between -l/an and -1/an + 1 and, hence, has real
negative roots.

We now prove part (b). We need the following inequality (see [9, p. 2261):
If Pn E 7rn then

Ip~k)(O)1 <. nk IIPnlll-l.lj'

Suppose Pn = L~=o bhxh is the best nth degree polynomial approximation to
Jon [-1,1). Then

co

Ilpn- snlll-l,1l<'2 L ah <.4a n + 1
h~n+l

and
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Thus,

Since
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and

we have, for all 0 <k ~ n,

It follows that, for 0 <k ~ n,

o~ bk + 1 ~ (9/8) ak + 1 ~ (9/32) a; ~ (18/49) b;.

If we consider qn(x) = Pn(2x) we see that qn satisfies the conditions of part
(a) provided ao~ 5/16, a l ~ a~/l0 and 288az ~ 49a~. I

Contained in the Polya class is the set of functions which are uniform
limits of polynomials with negative roots. These functions are all of the form

00

f(x) = ye'U n (1 + o;x),
i~1

Since neither all the partial sums nor all the best polynomial approximations
to e'u on [0, 1] have all negative roots it is apparent that r is a proper
subclass of this class (see [7]). The next theorem can be applied to the class
r*.

THEOREM 4. Suppose that f is continuous on [a, b], a ~ 0 and suppose
that the best polynomial approximation of degree n to f has only negative
roots. Then

Proof Let p E 7rn be the best polynomial approximation to f on la, b].
Let r/s be the best (n - k, k - 1)th approximation to f on [a, b] where
rE7rn _ k ,sE7rk _ l • Suppose, for the sake of a contradiction, that
Rn-k,k-l(f la, b]) < En(f: [a, b]). Once again, appealing to the alternation
characterization of best polynomial approximations, we deduce that

r(x) - s(x) . p(x)
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has n + 1 zeroes on [a, b]. This implies that

(r(x) - sex) . p(x»(n +I-k)

has at least k zeroes on [a, b]. However, since p(x) has n zeroes on (-00,0),

(r(x) - sex) . p(X»(n + l-k) = (P(X) . sex»(n+ I -k)

has k - 1 zeroes on (-00,0). This yields the contradiction that the
polynomial

(r(x) - sex) . p(x»(n + l-k)

of degree 2k - 2 has 2k - 1 roots.
Informally, Theorems 2 and 4 say that best rational approximations of

total degree n always reduce to polynomial approximations for functions of
class r and never reduce to polynomial approximations for Stieltjes
transforms. We observe that for X 1

/
2

R (X I/ 2. [0 1]) ~ e- c , n'l'n.n ., -...::::

but

and hence, that Rn,n can be very much smaller than P2n for functions
satisfying the conditions of Theorem 2. (See [6, pp. 64 and 169].)
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